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Abstract
We present Qogecoin, a fancy new blockchain that can do pretty much every-
thing and will fly to the moon. Qogecoin introduces sensible tokenomics and
a community-friendly infrastructure on a battle-tested codebase. In this paper,
we identify the need for quantum-resistant signatures in cryptocurrencies. We
take a look at current transaction models and show how to break their encryp-
tion with quantum computers. Furthermore, we discuss why it is necessary to
introduce quantum-resistant signature schemes many years before quantum
computers become commercially viable.

1 Chain parameters
Let us begin with simple things first. Below is a rundown of Qogecoin’s blockchain
parameters. [4]

Genesis. The genesis block was created on 1 September 2021, 12:40:00 GMT.
Max supply. Maximum supply is capped at 100 million. This is roughly 5x the

amount of bitcoin’s maximum supply.

Block time. Average block time is 1minute. To ensure consistency, Qogecoin uses
Dark Gravity Wave 3.0 for difficulty adjustment. [5]

Block reward. The initial reward is 100 qogecoin per block. Halving occurs every
500.000 blocks. This implies that the coinbase halves when the circulating
supply reaches 50 million, 75 million, 87.5 million, and so on.

years

coins

max supply

1 2 3 4

50M

100M

Consensus. Proof of work, YescryptR16. [8][9] Mineable on both GPU and CPU.

Compatibility. Qogecoin is fully compatible with existing Bitcoin APIs.
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2 Introduction
In the beginning, Jannis went to Aaron and was like, ”BrO LeTs BuIlD QuAnTuM-
sAfE BlOcKcHaIn” and Aaron was like, ”LeTs JuSt SpIn ThE q”, and Qogecoin was
born. And Jannis said, ”MiNeRzZ gO bRrRrRr” and made it mineable. And Aaron
said, ”ShIt Is ToO bLoAtEd” and built infrastructure. Then Jannis and Aaron real-
ized that they needed moar quick maths, so they went to Jaro like ”BrO nEeD 2+2
SkIlLz”. And Jaro was like, ”5” and made fancy calculations no one could under-
stand.

At some point the three realized that what they had built was beautiful, so they
rebuilt it against the Bitcoin core to benefit from the collective knowledge of those
who seemed to know what they were doing.

3 Transaction model
To clearly understand how quantum computers pose a threat to existing block-
chains, we need to understand blockchain transactions first. Note that this dis-
cussion is specific to Bitcoin derivatives but applies, in other form, to any other
blockchain using elliptic curve cryptography.

Addresses
A private key is a large randomly generated number. For instance, a base-64
encoded Qogecoin private key looks like

XMgizgMqE1VRvq9RZaE4zH8cdmVJdabGwKRzJWXs1ZYiQrZWXXZb.

From this private key, we can derive a base-16 encoded public key
028dddeb2cffebef453d80163ebf36b2c
edc9ebd3857dad4d356b543b2e4233957.

This derivation function is usually implemented using elliptic curve cryptography.
For ease of use, we apply various hash functions to shorten the public key to a base-
58 encoded address

qN8xXRAoLzRioamfdCw49ng77NQ5a4Gq5b.

Transactions
To illustrate transactions, we will restrict ourselves to a heavily simplified model.
Our idealized blockchain has only a single coin, and transactions can send this coin
from one address to another. Our transaction is described by the data structure

input_script:
<sig> // Cryptographic signature of the

// transaction, signed using the
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// sender's private key.
<pub_key> // Sender's public key.

output_script:
OP_DUP
OP_HASH160
<addr> // Receiver's address.
OP_EQUALVERIFY
OP_CHECKSIG

Qogecoin uses the Script language in input_script and output_script. It is
the same Turing incomplete language used by Bitcoin. Herein lies a stark con-
trast to Turing complete languages, such as Solidity, Ethereum’s transaction lan-
guage. [13] Turing completeness has shown to be rather easily exploitable in the
past. [3]

The single coin gets minted in a special transaction 𝑇0 that has no input script. This
transaction is often called coinbase transaction. The address specified in the
coinbase transaction can spend the coin by creating a transaction 𝑇1. The receiver
of 𝑇1 can now spend the coin by creating a transaction 𝑇2, and so on. In this way,
the coin goes on a journey from address to address. This journey describes a chain
of transactions 𝑇0, 𝑇1,… , 𝑇𝑛.
Let us now assume that user 𝐵 with address 𝑎𝑑𝑑𝑟𝐵, private key 𝑝𝑟𝑖𝑣𝐵 and public
key 𝑝𝑢𝑏𝐵 received the coin from user 𝐴 via transaction 𝑇𝑛. In order to send it to
another user 𝐶, user 𝐵 creates a new transaction 𝑇𝑛+1 as follows.

𝑇𝑛 input_script:
𝑠𝑖𝑔(𝑇𝑛, 𝑝𝑟𝑖𝑣𝐴)
𝑝𝑢𝑏𝐴

output_script:
OP_DUP
OP_HASH160
𝑎𝑑𝑑𝑟𝐵
OP_EQUALVERIFY
OP_CHECKSIG

𝑇𝑛+1 input_script:
𝑠𝑖𝑔(𝑇𝑛+1, 𝑝𝑟𝑖𝑣𝐵)
𝑝𝑢𝑏𝐵

output_script:
OP_DUP
OP_HASH160
𝑎𝑑𝑑𝑟𝐶
OP_EQUALVERIFY
OP_CHECKSIG

We want to ensure that at any time only a single address is able to claim the single
coin. This is done using a verification process.

Verification
Assume we have an existing sequence of transactions 𝑇0, 𝑇1…,𝑇𝑛 and a new trans-
action 𝑇𝑛+1. We say that 𝑇𝑛+1 is valid if the concatenation of input_script of
𝑇𝑛+1 and output_script of 𝑇𝑛 evaluates to True. Let us take a closer look at this
concatenation.

Commands Stack

<sig> <sig>
<pub_key> <sig> <pub_key>
OP_DUP <sig> <pub_key> <pub_key>
OP_HASH160 <sig> <pub_key> <hash(pub_key)>

3



Qogecoin

<addr> <sig> <pub_key> <hash(pub_key)> <addr>
OP_EQUALVERIFY <sig> <pub_key>
OP_CHECKSIG True

Here, OP_EQUALVERIFY only removes the top two elements from the stack if <addr>
is equal to <hash(pub_key)>. The OP_CHECKSIG command verifies if <sig> is a
valid signature for 𝑇𝑛+1. We require this to only be the case if the private key used
to create <sig> and the private key used to create <pub_key> coincide.

The need for quantum safety
Existing hashing schemes are assumed to be quantum secure. That is, given only
addr we cannot efficiently derive pub_key from it. However, when using elliptic
curve cryptography we CAN use a quantum computer to derive the private key
given only pub_key. We will show how to do this in the remainder of this pa-
per.

As soon as a user issues a transaction, the user’s public key is revealed on the
blockchain. Hence, any address that ever made a transaction is freely useable by
someone with a sufficiently large quantum computer.

Currently, users can keep their funds quantum-safe by spending their entire funds
in every transaction. Assume we have 100 coins and want to spend 1 coin. We
create a transaction sending 1 coin to our target and 99 coins to a new address that
we own and have never used. Then our funds are only insecure for the time it takes
the network to verify the transaction. Unfortunately, for users requiring reusable
addresses, this is not an option.

Most applications built on top of the basic transaction model use OP_CHECKSIG in
some form and as such have the same vulnerabilities as basic transactions. Some
smart contracts lock funds for several years and reuse addresses frequently. So even
if quantum computers are still years away from being commercially viable, it is
necessary to update signature schemes a long time in advance.

Qogecoin aims to switch to a quantum-safe signature scheme. Public keys and
signatures are stored on the blockchain. Hence, we need to keep these sizes low.
Finding quantum-safe signature schemeswith reasonable security and small signa-
ture/public key sizes is not an easy task and subject of ongoing research. [2]

4 Elliptic curves
Elliptic curves are, unsurprisingly, the central building block of elliptic curve cryp-
tography.

Definition
For a prime number 𝑝 > 3 we denote the finite field with 𝑝 elements by 𝔽𝑝. Its
elements are represented by integers where addition and multiplication are calcu-
lated modulo 𝑝. For instance, if 𝑝 = 5, the elements in 𝔽5 can be represented by
0, 1, 2, 3 and 4. Here, 3 + 4 = 2 because 7modulo 5 is 2.
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Consider the equation
𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

𝑥

𝑦

Elliptic curve 𝑦2 = 𝑥3 + 7
without∞ over 𝔽37.

𝑥

𝑦

𝐸(ℝ)

𝑃

𝑄

𝑃 + 𝑄

An elliptic curve over
the real numbers.

with parameters 𝑎, 𝑏 ∈ 𝔽𝑝. An elliptic curve 𝐸 is the set of solutions (𝑥, 𝑦) ∈ 𝔽2𝑝
of this equation, together with an element∞.1 We can imagine each element of 𝐸
as a point on a grid. It turns out that 𝐸 has additional structure. For two points 𝑃 =
(𝑥𝑃 , 𝑦𝑃) and𝑄 = (𝑥𝑄, 𝑦𝑄) in𝐸we can drawa line𝐿 through𝑃 and𝑄, parameterized
by

(𝑥𝑄 − 𝑥𝑃 , 𝑦𝑄 − 𝑦𝑃) ⋅ 𝑠 + (𝑥𝑃 , 𝑦𝑃).
This line intersects𝐸 in exactly onemore point𝑅 = (𝑥𝑅, 𝑦𝑅) ∈ 𝐸. There are various
special cases. For instance, the point∞ is defined as the third point of intersection
of a line through (𝑥, 𝑦) and (𝑥, −𝑦).
We get an abelian group structure on 𝐸 by defining the inverse and the addition
as

−𝑅 = (𝑥𝑅, −𝑦𝑅)
𝑃 + 𝑄 = −𝑅.

It follows that∞ is the neutral element and we denote it by 0. For example, let us
calculate 𝑃 + 𝑄 for 𝑃 = (6, 1) and 𝑄 = (8, 1) for the curve 𝑦2 = 𝑥3 + 7 over 𝔽37.
The line through 𝑃 and 𝑄 is given by (2, 0) ⋅ 𝑠 + (6, 1). It further intersects 𝐸(𝔽37) in
(23, 1). Hence, 𝑃 + 𝑄 = (23, −1).

Elliptic curve discrete logarithm problem
Back to signatures for blockchain transactions. Let 𝑝 > 3 be a prime number, 𝐸 an
elliptic curve over 𝔽𝑝, and 𝑃 ∈ 𝐸 a point. For an integer𝑚 we can calculate

𝑚𝑃 =
𝑚
∑
𝑖=1

𝑃.

Let us assume that 𝑃 is of prime order 𝑟. This means that 𝑟 is a prime number and
that 𝑟 is the smallest natural number such that 𝑟𝑃 = 0 in 𝐸.
A private key is a randomly chosen𝑚. The public key to a private key𝑚 is the
point 𝑚𝑃. In practice, points on 𝐸 are represented by their 𝑥-coordinate together
with the sign of the 𝑦-coordinate. The most prominent example is given by the
secp256k1 standard. [11]

p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F

a = 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

b = 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000007

P = 02 79BE667E F9DCBBAC 55A06295 CE870B07
029BFCDB 2DCE28D9 59F2815B 16F81798

1Technically, these are only the 𝔽𝑝 rational points of an elliptic curve but we do not want to delve
into the depths of schemes and algebraic geometry.
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After issuing transactions, the public keys are visible to anyone. The secureness of
elliptic curve cryptography is based on the fact that reverse computing the private
key from a public key is a very hard problem. Naively forward computing public
keys is nearly impossible because, in practice, the number of potential values for
𝑚 is gigantic. Deducing 𝑚 from 𝑚𝑃 seems simple, but classical computers would
essentially take forever for this calculation. [10]

5 Quantum computing
We will now see how quantum computers can be viewed as extensions of classical
computers.

Classical computers
In a simplified manner, we may describe a classical computer as a tuple

(𝒮, 𝒪).

Here, 𝒮 is an arbitrary set whose elements we call states. The set 𝒪 is an arbitrary
set of maps 𝒮 → 𝒮 such that for 𝑂,𝑂′ ∈ 𝒪 their composition 𝑂 ∘ 𝑂′ is again in 𝒪.
We call the elements of 𝒪 operations.
In the real world, a processing unit is usually only able to execute very simple op-
erations. In our generalized setting, we can describe this property by considering a
subset 𝒢 of 𝒪. We require every element of 𝒪 to be the composition of elements of
𝒢. We use the term gates for elements of 𝒢.
We can now view any program as a series of gates 𝐺1,… , 𝐺𝑛, sequentially executed
to transition an initial state 𝑠 to a final state 𝑡.

𝑠 𝐺1 … 𝐺𝑛 𝑡

Bits
In a typical example, the states of a classical computer are described by 𝑛 bits of
memory. For instance, we could consider

𝒮 = {0, 1}𝑛
𝒢 = {0𝑖, NOT𝑖, AND𝑖𝑗𝑘 ∣ 𝑖, 𝑗, 𝑘 = 1,… , 𝑛}

The 0𝑖 operations set the 𝑖-th bit to zero and the NOT𝑖 operations flip the 𝑖-th bit.
The AND𝑖𝑗𝑘 operations compute AND for the 𝑖-th and 𝑗-th bit and write the result to
the 𝑘-th bit. For instance, when 𝑛 = 8, we can describe multiplication by 2 as the
sequence

AND667 AND556 … AND001 00
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Quantum computers
We describe a quantum computer as a tuple

(ℋ,𝒰).

Here,ℋ is a complex Hilbert space. This is a complete complex vector space with
a Hermitian inner product

⟨⋅ ∣ ⋅⟩ ∶ ℋ ×ℋ → ℂ
(𝑣,𝑤) ↦ ⟨𝑣 ∣ 𝑤⟩ .

Wecall the vectors of norm 1 quantumstates.2 Weuse theDirac notation |𝑣⟩ ∈ ℋ
to denote quantum states.3 The set 𝒰 is an arbitrary subgroup of the group of uni-
tary operators on ℋ. This means that elements of 𝒰 are linear maps ℋ → ℋ
preserving the norm. We call the elements of 𝒰 quantum operations. Our con-
struction ensures that quantum operations alwaysmap quantum states to quantum
states. Let ℬ be a choice of a generating set of the group 𝒰. Then we call the ele-
ments of ℬ quantum gates.

From classical computers to quantum computers
A classical computer (𝒮, 𝒪) is called reversible if𝒪 consists only of bijectivemaps.
In this case, operations are simply permutations on 𝒮. We may always enlarge 𝒮 to
make a classical computer reversible. [7]

Let (𝒮, 𝒪) be a reversible classical computer with finite 𝒮. We construct a Hilbert
space from 𝒮 by taking the ℂ-span

ℋ = ℂ𝒮.

The elements of 𝒮 are a natural choice for a basis ofℋ. We call this basis the com-
putational basis. We are left with defining the Hermitian inner product. The
obvious choice is the standard inner product with respect to the computational ba-
sis

⟨𝑣 ∣ 𝑤⟩ = ∑
𝑠∈𝒮

𝑣𝑠 ⋅ 𝑤𝑠.

Since we required (𝒮, 𝒪) to be reversible, classical operations define permutations
on the computational basis 𝒮. Hence, classical operations uniquely extend to uni-
tary operators on ℋ. We now choose 𝒰 to be any subgroup of unitary operators
containing 𝒪 in the above sense.

Measurements
Let (ℋ,𝒰) be a quantum computer constructed from a classical computer (𝒮, 𝒪) as
previously discussed. Consider a quantum state

|𝑣⟩ = ∑
𝑠∈𝒮

𝑣𝑠 ⋅ |𝑠⟩ .

2Usually called pure quantum states.
3We say ”bra𝑤” for ⟨𝑤| ∈ ℋ∗ and ”ket 𝑣” for |𝑣⟩ ∈ ℋ. This is convenient because we can identify

⟨𝑤| (|𝑣⟩) = ⟨𝑤 ∣ 𝑣⟩ as ”bra ket”.
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We can observe a classical state after measuring the quantum state |𝑣⟩ with re-
spect to the computational basis. We will observe a specific classical state 𝑠 with
probability |𝑣𝑠|

2. After measuring, the quantum computer will be in the quantum
state |𝑠⟩. So if we were to measure it again, we would observe the same classical
state 𝑠 again.
We can view a program on a quantum computer as a sequence of quantum gates
𝑈1,… ,𝑈𝑛 and a measuring. The sequence operates on a quantum state |𝑣⟩ and
returns a classical state 𝑡 after measurement. Note that 𝑡 is not deterministic, so in
practice, onewould repeat the computation several times to increase the confidence
in the result.

|𝑣⟩ 𝑈1 𝑈2 … 𝑈𝑛 𝑡

In practice, the set 𝒮 is usually given as a product 𝒮 = 𝑆1 × 𝑆2. The corresponding
Hilbert space then decomposes as

ℋ = ℂ𝑆1 ⊗ℂ𝑆2 .

We call these factors first and second register. Similarly, we can describe quantum
computers with 𝑛 registers.

Qubits
Let us now explicitly transition from a single bit classical computer with 𝒮 = {0, 1}
to a quantum computer with a single qubit. The Hilbert space corresponding to 𝒮
is the 2-dimensional spaceℋ = ℂ{0,1}. The quantum states are

|𝑣⟩ = 𝛼 |0⟩ + 𝛽 |1⟩

where 𝛼, 𝛽 ∈ ℂ such that 𝛼2+𝛽2 = 1. The space of all quantum states is a complex
1-dimensional hyperplane in ℋ. Measuring a qubit in the quantum state 𝛼 |0⟩ +
𝛽 |1⟩ results in the classical state 0 with probability |𝛼|2 and in 1 with probability
|𝛽|2.
Unitary operators onℋ are rotations of the qubit state space. For instance, the clas-
sical gate NOT from our previous example induces a quantum gate 𝑋 , represented
by the reflection matrix

X(𝛼 |0⟩ + 𝛽 |1⟩) = [0 1
1 0] ⋅ [

𝛼
𝛽] = [𝛽𝛼] = 𝛽 |0⟩ + 𝛼 |1⟩ .

|0⟩

|0⟩

|1⟩

|1⟩

|𝑣⟩

|𝑣⟩

Bloch sphere representation
of qubit state space.

|0⟩

|0⟩

|1⟩

|1⟩
Hadamard rotation by 𝜋
around the diagonal.

Quantum gates on Qubits
The Hadamard gate is the unitary operator acting on a single qubit, represented
by the matrix

H = 1
√2

[1 1
1 −1] .

H

The Hadamard gate operates on the computational basis as

H(|0⟩) = |0⟩ + |1⟩
√2

, H(|1⟩) = |0⟩ − |1⟩
√2

.
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Measuring after applying the Hadamard gate on |0⟩ will result in the state 0 with
probability 1/2 and in the state 1 with probability 1/2. Measuring after applying
two Hadamard gates on |0⟩ will certainly result in the state 0.
For 𝜑 ∈ ℝ the phase shift gate is the unitary operator acting on 1 qubit, repre-
sented by the matrix

P𝜑 = [1 0
0 𝑒𝑖𝜑] .

P

|0⟩

|0⟩

|1⟩

|1⟩
Phase shift by 𝜑 around

the polar axis.

A phase shift alone does not influence a measurement, but as soon as a phase
shift interacts with anything other than a phase shift it will influence the measur-
ing.

For many computations, we require multiple qubits to interact with each other.
One such interaction can be constructed by using one qubit to control a gate on
another qubit. Given a gate 𝑈 acting on one qubit, we define the controlled-U
gate on two qubits as the unitary operator represented by the 4 × 4matrix

C𝑈 = [𝟙2 0
0 𝑈] .

For instance, a controlled phase shift gate on 2 qubits is represented by

CP𝜑 =
⎡⎢⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 𝑒2𝜋𝑖𝜑

⎤⎥⎥⎥
⎦

.
𝑈

In circuit notation, we will denote the controlling qubit by a dot.

Quantum Fourier transform
Let ℤ/𝑟ℤ be the cyclic group with 𝑟 elements. The quantum Fourier transform,
or in short QFT, is the unitary operator acting on ℂℤ/𝑟ℤ, defined as

QFT (|𝑔⟩) = 1
√𝑟

∑
𝑥∈ℤ/𝑟ℤ

𝑒2𝜋𝑖𝑔𝑥/𝑟 |𝑥⟩ .

Computingwith 𝑛 bits is the same as computing inℤ/2𝑛ℤ by identifying each num-
ber with its binary representation. This means that we can construct a quantum
Fourier transform in this case. For 𝑟 = 2𝑛, the quantum Fourier transform can be
implemented using Hadamard gates and controlled phase shift gates. [6]

H P𝜋/2 … P𝜋/2𝑛−1

… H P𝜋/2 … P𝜋/2𝑛−2

⋮ ⋮ ⋮

… … … H P𝜋/2

… H
QFT with reversed output qubits.
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6 Shor’s algorithm on elliptic curves
Let 𝑝 > 3 be a prime number. Let 𝐸 be an elliptic curve over 𝔽𝑝 and 𝑃 ∈ 𝐸 a base
point of prime order 𝑟. We want to compute the private key 𝑚 ∈ ℤ/𝑟ℤ given the
public key 𝑄 = 𝑚𝑃 in 𝐸.

Algorithm
For simplicity, we now work with an abstract quantum computer. Consider an
invertible classical computer on the set

𝑆 = ℤ/𝑟ℤ × ℤ/𝑟ℤ × 𝐸.

As described earlier, we can extend this invertible classical computer to a quantum
computer with Hilbert space

ℋ = ℂ𝑆 = ℂℤ/𝑟ℤ ⊗ℂℤ/𝑟ℤ ⊗ℂ𝐸.

We denote its quantum states by |𝑘, 𝑙⟩⊗|𝑅⟩. For our computation, we will need two
quantum gates. Consider the classical operation

PQ (𝑘, 𝑙, 𝑅) = (𝑘, 𝑙, 𝑘𝑃 + 𝑙𝑄 + 𝑅).

It induces a quantum gate that we denote by PQ. We can interpret PQ as the addi-
tion on 𝐸, controlled by the quantum state |𝑘, 𝑙⟩. The second quantum gate we need
is a QFT on ℂℤ/𝑟ℤ. Using these quantum gates we can build a quantum circuit as
depicted below.

|0, 0⟩

|0⟩

QFT⊗ QFT

PQ

QFT⊗ QFT
|𝑥, 𝑦, 𝑅⟩

Let us walk through this circuit step by step. We initialize the states to

|0, 0⟩ ⊗ |0⟩

where the first register holds the zeros in ℤ/𝑟ℤ and the second register holds the
zero element of the elliptic curve. Now we apply QFT⊗ QFT on the first register.
Since 𝑒0 = 1, we will be left in the state

QFT⊗ QFT(|0, 0⟩) ⊗ |0⟩ = ( 1
√𝑟

∑
𝑘∈ℤ/𝑟ℤ

|𝑘⟩) ⊗ ( 1
√𝑟

∑
𝑙∈ℤ/𝑟ℤ

|𝑙⟩) ⊗ |0⟩

= 1
𝑟 ∑
𝑘,𝑙∈ℤ/𝑟ℤ

|𝑘, 𝑙⟩ ⊗ |0⟩ .

Now we apply PQ on the second register, leaving us in the state

1
𝑟 ∑
𝑘,𝑙∈ℤ/𝑟ℤ

|𝑘, 𝑙⟩ ⊗ |𝑘𝑃 + 𝑙𝑄⟩ .
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Finally, we apply QFT⊗ QFT again and our final quantum state is

1
𝑟2 ∑

𝑥,𝑦,𝑘,𝑙∈ℤ/𝑟ℤ
𝑒2𝜋𝑖(𝑥𝑘+𝑦𝑙)/𝑟 |𝑥, 𝑦⟩ ⊗ |𝑘𝑃 + 𝑙𝑄⟩ .

Measuring this state will result in a tuple (𝑎, 𝑏, 𝑍). We will now show that any non-
zero (𝑎, 𝑏) will give us the private key as

𝑚 = 𝑏
𝑎

with division modulo 𝑟.

Correctness
Let (𝑎, 𝑏, 𝑍) be the outcome of the measurement of the final state, and let (𝑥, 𝑦, 𝑅)
be a specific tuple with 𝑥, 𝑦 ∈ ℤ/𝑟ℤ and 𝑅 ∈ 𝐸 a curve point. We will show that the
probability of (𝑎, 𝑏, 𝑍) and (𝑥, 𝑦, 𝑅) coinciding is

{
1
𝑟2
, 𝑥𝑚 − 𝑦 = 0 mod 𝑟

0, 𝑥𝑚 − 𝑦 ≠ 0 mod 𝑟.

Furthermore, with probability (𝑟 − 1)/𝑟 the integer 𝑎 is non-zero modulo 𝑟. In this
case𝑚 = 𝑏/𝑎modulo 𝑟.
The probability of measuring the final state to a specific (𝑥, 𝑦, 𝑅) is given by the
squared norm of the coefficient of |𝑥, 𝑦⟩ ⊗ |𝑅⟩ in the final state. Let us take a closer
look at this coefficient 1

𝑟2 ∑
𝑘,𝑙∈ℤ/𝑟ℤ
𝑘𝑃+𝑙𝑄=𝑅

𝑒2𝜋𝑖(𝑥𝑘+𝑦𝑙)/𝑟.

We assume that there is a pair (𝑘𝑅, 𝑙𝑅) with 𝑘𝑅𝑃 + 𝑙𝑅𝑄 = 𝑅. Otherwise, the sum is
empty. Any 𝑘, 𝑙with 𝑘𝑃+𝑙𝑄 = 𝑅 can then be written as (𝑘, 𝑙) = (𝑘𝑅, 𝑙𝑅)+𝑡 ⋅ (𝑚,−1)
with 𝑡 = 0,… , 𝑟 − 1.4 The coefficient can then be written as

1
𝑟2

𝑟−1
∑
𝑡=0

𝑒2𝜋𝑖(𝑥(𝑘𝑅+𝑡𝑚)+𝑦(𝑙𝑅−𝑡))/𝑟

= 1
𝑟2 𝑒

2𝜋𝑖(𝑥𝑘𝑅+𝑦𝑙𝑅)/𝑟
𝑟−1
∑
𝑡=0

𝑒2𝜋𝑖𝑡(𝑥𝑚−𝑦)/𝑟.

Phase shifts at the end of the circuit do not affect the measurement. In other words
||𝑒𝑖𝜑|| = 1. Hence, taking the squared norm will give us

||||
1
𝑟2

𝑟−1
∑
𝑡=0

𝑒2𝜋𝑖𝑡(𝑥𝑚−𝑦)/𝑟
||||

2

.

4The stabilizer of 0 is a proper subgroup of a group of order 𝑟2, hence of prime order 𝑟 and (𝑚,−1)
is a generator.

11
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Recall ∑𝑛−1
𝑖=0 𝑠𝑖 = (1 − 𝑠𝑛)/(1 − 𝑠) for any complex number 𝑠 ≠ 1. With 𝑠 =

𝑒2𝜋𝑖(𝑥𝑚−𝑦)/𝑟, the condition 𝑠 ≠ 1 translates to 𝑥𝑚 − 𝑦 ≠ 0modulo 𝑟. We get

⎧
⎪
⎨
⎪
⎩

||||
1
𝑟2

𝑟−1
∑
𝑡=0

𝑒2𝜋𝑖𝑡(𝑥𝑚−𝑦)/𝑟
||||

2

= 1
𝑟2 , 𝑥𝑚 − 𝑦 = 0 mod 𝑟

|||
1
𝑟2 ⋅

1 − 𝑒2𝜋𝑖(𝑥𝑚−𝑦)

1 − 𝑒2𝜋𝑖(𝑥𝑚−𝑦)/𝑟
|||

2

= 0, 𝑥𝑚 − 𝑦 ≠ 0 mod 𝑟.

We now know with certainty that the tuple (𝑎, 𝑏, 𝑍) satisfies 𝑎𝑚 − 𝑏 = 0modulo 𝑟
and that 𝑍 is a multiple of 𝑃. If 𝑎 = 0, then 𝑏 = 0 and there are 𝑟 possible choices
for 𝑍 since 𝑃 is of order 𝑟. Hence, the probability of 𝑎 ≠ 0 equals 1 − 𝑟 ⋅ (1/𝑟2) =
(𝑟 − 1)/𝑟.

7 Conclusion
Whew! That was a lot to take in! We learned how blockchain transactions work,
how quantum computers work and how quantum computers can break current
elliptic curve cryptography. We discussed why quantum safety is already relevant
even if quantum computers are quite a few years away from commercial viabil-
ity.

Going forward, we will work hard on finding and implementing signature schemes
that are suited to blockchain transactions. Additionally, we will stay upstreamwith
Bitcoin core so that we can keep adding all the nice features one would expect from
a modern blockchain. Add in various modernizations from other areas of the soft-
ware industry andwe are on a good path to creating a blockchain that is lean, mean,
and ready for the era of quantum supremacy.
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